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White Paper 
 

DMET™ Plus genotyping and copy number methods 
 
This document describes the genotyping analysis methodology used with data 
produced by the DMET™ Plus Product. This method is designed to analyze samples in 
one of two ways: single-sample (individual) analysis, and dynamic clustering 
analysis. Single-sample analysis produces conservative, accurate results that do not 
depend on any additional data within a batch of experiments. When single-sample 
analysis is not required, dynamic clustering analysis can improve the genotyping call 
rate by using information from other samples in the batch to adjust the pre-defined 
cluster properties relative to the experimental conditions of the batch. 
 
To this end, the data from an assay is normalized to a fixed standard constructed at 
Affymetrix, removing typical experimental variation. Each individual probe set 
associated with a given marker is summarized using a robust measure (median) 
after removing invariant probe–probe differences. These summary values are thus 
resistant to outliers and depend only on the experiment done rather than on any 
individual batch of results. 
 
Finally, these summary values are compared to the clusters, either pre-defined or 
adjusted, for each possible genotype or copy number for a polymorphism, as well as 
a universal absolute standard for detecting data points too far away from the 
reference. The result is a collection of genotype calls and confidence values. At each 
step, the most conservative interpretation of the data is attempted to ensure high 
accuracy in the genotyping calls produced. 
 
The remainder of this document provides technical detail on each step described. 
 
Section 1 provides an overview of how the DMET™ Plus Array was designed, 
illustrating the kinds of markers interrogated and the kinds of array probes that were 
designed to detect the alternative alleles at each of them. 
 
Section 2 is devoted to pre-processing the data prior to genotyping and copy number 
(CN) determination: normalization, summarization, and the handling of unusual 
markers. Unusual markers include those with more than two alleles, markers in copy 
number variation regions, and markers with additional mutations in the vicinity that 
can affect the hybridization properties of probes. 
 
Section 3 explores the expected signal distributions. For single-sample analysis, 
these are the reference distributions, but for dynamic clustering analysis, the sample 
signals from the analysis batch can modify these distributions. 
 
Section 4 concentrates on the mechanics of making genotyping calls. In essence, this 
is a simple matter of comparing data points to the expected summary values for 
each genotype and accounting for the typical variation seen in the data. However, 
this becomes slightly more complex for cases in which rare alleles have not been 
seen in the training data, or when the data falls outside of the expected scatter for 
well-behaved experiments. 
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Section 5 provides details on the determination of copy number calls. The general 
concept applied for calling copy number is similar to calling genotypes, though there 
are differences in how the pre-defined copy number models are built. 
 
Section 6 discusses the typical behavior and performance of this methodology when 
run in single-sample and dynamic modes, including interpretation of quality control 
results and some suggestions for identifying suspicious batches of data. 
 
Finally, in three appendices, we describe the construction of the standard references 
for genotyping (Appendices A and C) and copy number markers (Appendix B). These 
operations include computational elements (active clustering of data), as well as 
manual curation of reference genotypes and cluster properties. This standard 
reference was trained on more than 1,300 distinct DNA samples run with a variety of 
operators and equipment, with high-value markers verified by independent 
genotyping methods for a subset of the training set. 

Section 1: Design of the DMETTM Plus Array 
The DMET Plus platform interrogates a variety of types of genetic markers that can 
be roughly categorized into genotyping markers and regions of copy number 
variation (CN regions). The genotyping markers can themselves be further classified 
as biallelic SNPs, triallelic SNPs and insertions/deletions (indels) of varying length. 
Additionally, some of the genotyping markers are themselves located in CN regions 
and/or may have nearby secondary polymorphisms that could interfere with 
genotyping. The frequencies of these classes are summarized in Table 1. 
 

Marker property 
Number of genotyping 

markers 

Number of alleles 
2 1,902 

3 29 

Secondary 
polymorphisms 

(within 10 bases) 

none 1,502 

≥1 429 

CN status 

In a region assumed to 
always have CN=2 

1,869 

In an autosomal region of CN 
variation 

62 

Insertion/deletion 
Not an indel 1,854 

Indel 77 

Autosomal/sex 
chromosome 

Autosomal 1,885 

Chromosome X 46 

Chromosome Y 0 

Table 1: A breakdown of the 1,931 genotyping markers with respect to number of alleles, the 
presence of absence of potentially interfering secondary polymorphisms, and whether or not the 
marker is located in an autosomal CN region or on a sex chromosome. 

 
Markers on DMET Plus are interrogated using molecular inversion probe (MIP) 
technology1–4. One or more MIPs is included for each of the genotyping markers in 
the assay probe pools. For some of the more important markers that have adjacent 
secondary polymorphisms, multiple MIPs were designed specifically for each of the 



 
 
Affymetrix® White Paper: DMETTM Plus genotyping and  June 8, 2011 
copy number methods  P/N DNA00584 Rev.1  
 
For Research Use Only. Not for use in diagnostic procedures.   Page 3 of 29 

possible sequence variants (or contexts) in which the polymorphism of interest is 
located. For example, if a biallelic marker of interest has three adjacent biallelic 
SNPs, it would have a MIP for each of the eight possible sequence contexts. For 
indels, at least one MIP is designed for each allele, with each MIP using a different 
tag. This type of design has the additional benefit of allowing the opportunity to 
discriminate genotypes by the use of allele-specific tags. Each of the other markers 
shares a common tag across all MIPs used. 
 
Each of the five CN regions has some genotyping markers contained within them that 
can also be used for copy number estimation. In addition, MIPs were designed 
against unique regions contained within the CN region and not overlapping any other 
known polymorphisms. These are referred to as CN MIPs, as opposed to the 
genotyping MIPs described above. 
 
For each MIP in the panel, a collection of probes is tiled on the DMET Plus Array to 
read out the signal. There are two kinds of probe sets for each MIP: one that is 
complementary to the genomic region targeted by the MIP and one that is 
complementary to the unique tag that is part of the MIP itself (referred to as ASO 
[allele-specific oligonucleotide] and tag probe sets, respectively). Table 2 gives the 
counts of ASO and tag sequences for various marker types. 
 

Marker type 

Number of distinct sequences 
interrogated for each type of 

polymorphism 

ASO Tag 

Copy number 1 1 

Biallelic SNP 2 1 

Triallelic SNP 3 1 

Biallelic indel 2 2 

Wobble SNP 
One for each allele in 

each context 
1 

Wobble indel 
One for each allele in 

each context 
2 

Table 2: Number of distinct sequences interrogated for each of the various types of 
polymorphism represented on the DMET Plus Array. 

 
An extensive collection of array probes is used to interrogate each targeted sequence 
to maximize the chance of successful signal detection. MIP tags are interrogated with 
array probes of up to 3 lengths from both strands with 3 replicates each, for a total 
of 3 x 2 x 3 = 18 probes. Allele-specific genomic sequences are interrogated with 
probes from 2 strands, up to 5 probe lengths, up to 9 offsets relative to the 
interrogation base and up to 3 identical replicates on the array— as many as 270 
probes per allele-context (Table 3). Factoring in that the ASO probe set for each 
genotyping marker comprises multiple collections of probes (one per allele and 
increasing exponentially in the presence of adjacent secondary polymorphism), some 
markers are interrogated by thousands of array probes. 
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Probe set 
type 

Array probe counts for each interrogated sequence 

Alleles Offsets Strands Length Replicates Contexts Total 

ASO 1 9 2 5 3 Varies 270 

Tag 1 1 2 3 3 Varies 18 

Table 3: Maximum possible number of array probes used to interrogate each unique sequence. 
The maximum number of array probes for a given marker is equal to this value multiplied by the 
number of alleles and by the number of sequence contexts.  For example, the number of ASO 
probes for a biallelic SNP with two adjacent biallelic SNPs would be 2,160 (= 2 x 2 x 2 x 270). 
Markers of critical importance (as determined by the ADME consortium) receive the fullest extent 
of interrogation; other markers are interrogated with fewer combinations of strands and lengths 
but with at least 132 ASO probes per allele-context. 

Section 2: Preprocessing of data 
A single DMET Plus Array contains slightly more than 1 million features, with a 
diverse assortment of probe sequences, including control probes of various kinds. For 
each marker, the signal intensities of relevant probes need to be extracted, 
normalized, and summarized to remove irrelevant effects on raw intensity and 
produce values that can be reasonably compared to the reference clusters. This 
section describes the four-stage process of standardizing the data:   
 

1. Normalizing global assay effects 
2. Summarizing individual allele-specific probe sets 
3. Reducing multiple probe sets to the biallelic case 
4. Transforming the data into an appropriate clustering space. 

 
It is standard practice in genotyping assays to remove global intensity effects by a 
nonlinear transformation that makes the distribution of intensities observed in an 
experiment identical to a standard intensity distribution. This process is known as 
quantile normalization2 because it transforms the intensity of all "quantiles" of the 
input distribution (median, 75th percentile, 97th percentile, etc.) to the intensity of 
the equivalent quantile in a standard distribution. The full transformation is memory- 
and time-intensive, and so we approximate the distribution by 50,000 points within 
the distribution and linearly interpolate the intensity transformation between 
modeled points. This approximation is known as sketch normalization, because it 
uses a set of representative points to "sketch" the distribution. The standard 
intensity distribution is a fixed distribution constructed at Affymetrix from a large 
training set. This transformation removes irrelevant global effects from the raw 
intensities on the array (overall brightness, etc.), allowing them to be compared with 
those experiments in the training set. 
 
After removing global intensity effects, the next step is to summarize probe sets 
associated with each allele. Each probe set consists of a number of probes designed 
to hybridize with a particular target sequence; however, the probes may be of 
differing lengths and may overlap a marker at different offsets (i.e., the SNP is not 
necessarily in the central position of the probe). These differences lead to systematic 
intensity differences among the probes. These multiplicative differences are removed 
by applying an individual multiplicative effect to every probe. These feature effects 
are read from a standard file and do not depend on the sample or samples in a 
batch. The probe set is then summarized by taking a median, which is a robust 
summary of the intensity values. The median calculation is actually performed on the 
logarithmic scale, and the feature effects are removed from the additive model by 
subtraction on this scale. This procedure is essentially the median-polish 
summarization from the well-known Robust Multichip Analysis (RMA) used 
extensively with expression microarrays5–7, but with fixed feature effects. After this 
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step, each probe set associated with a unique genomic target sequence is 
represented by a single number, the signal for that probe set. 
 
For simple biallelic markers, the probe set summarization process described above 
results in two numbers, one associated with each allele. However, unlike previous 
SNP products, the DMETTM Plus Array contains markers with more complexity 
associated with them, such as trialleles and markers with additional nearby 
mutations. Trialleles are similar to biallelic markers in that each of the three alleles 
has a summary value. Markers with additional nearby sequence complexity have a 
probe set associated with each possible variant within the local sequence. We refer 
to such local sequence haplotypes as “contexts” for a marker. For such markers, we 
have a probe set for each allele and each context, which can lead to a large number 
of summary values—a biallelic marker with 8 SNPs in the nearby region would have 
256 contexts, each of which has a probe set for each allele, resulting in 512 
summary values. Because humans are diploid organisms, only one or two summary 
values for each marker represent the true sequences in the individual assayed (at 
least for markers in a region with a copy number of two). 
 
Therefore, for a given marker in a particular sample, the collection of summary 
values is reduced to only two values. For simple biallelics, these two values are 
always the summary values for each allele. For trialleles, the two alleles that are 
most likely present are chosen to represent the marker in a given sample. This 
decision is made by choosing the two probe sets with the highest signals as those 
most likely to represent perfect hybridization to a target. For multi-context biallelic 
markers, the contexts most likely to represent true hybridization for each allele are 
chosen. This decision is also made by choosing for each allele the probe set with the 
highest signal among all the contexts available. In this manner, every marker in a 
given sample is assigned two summary values, each representing one allele type for 
a marker. This assignment allows all markers to be mathematically handled as 
though they were simple biallelic markers for genotyping purposes. 
 
Prior to genotyping, the two summary values (one per allele) are transformed for 
mathematical convenience. Call these values alleles A and B. Because typical scatter 
is multiplicative in intensity, the values are log-transformed. Because the difference 
in allelic content is of primary interest, a value known as “contrast” = log2(A) – 
log2(B) is constructed, which contains most of the variation between genotypes.  The 
value “strength” = 0.5(log2(A) + log2(B)) is also constructed. The paired value 
(contrast, strength) will be compared with typical values for various genotypes to 
determine the actual genotype call. 

Section 3: Expected signal distributions 
Genotype calls are made by comparing the observed signal values for a marker with 
the expected signal distributions for different genotypes and choosing the genotype 
that yields the maximum likelihood for the observed data. The source of the 
expected distribution of signal values depends on whether the analysis mode is 
single sample or dynamic clustering. Single-sample analysis utilizes a fixed reference 
distribution for each genotype based on the results of genotyping a large training set 
at Affymetrix. Dynamic clustering, on the other hand, modifies the reference probe 
set intensity distributions based on observed signal values for the samples in the 
batch. Appendix A describes the creation of the reference distributions, which are 
based on the results of genotyping a large training set at Affymetrix. 
 
The dynamic clustering analysis uses a Bayesian approach to combine the observed 
signal values with a prior based on the reference distributions to form a posterior 
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expected signal distribution. The prior and posterior distributions for each genotype 
are two-dimensional normal-inverse-Wishart distributions in contrast-strength space. 
For a given marker, the samples in the analysis batch are assigned genotypes using 
a one-dimensional contrast-based Gaussian maximum likelihood approach8. For each 
genotype, the associated samples are combined with the prior to generate the 
posterior distributions. 
  
To allow better adaptation to different experimental conditions when the number of 
samples in a batch is relatively small, the number of observations for a given cluster 
saturates at a parametric value set to a small number. Some markers have close-
lying clusters, and allowing the dynamic adjustment of cluster locations can lead to 
undesirable results. Therefore, for the original dynamic method, the number of 
observations for these markers is kept at their full values to minimize cluster 
adaptation. Appendix C lists these special markers. 

Section 4: Genotyping calls and confidences 
Although different approaches are used to set signal ranges, genotype calling 
operates in the same manner for both single-sample mode and dynamic-clustering 
mode. The genotyping process compares the observed signal values for a marker 
with the expected signal values for appropriate genotypes and chooses the genotype 
that yields the maximum likelihood for the observed data. This likelihood function 
takes into account the expected observational scatter of the data, the typical 
frequency of a genotype, and the uncertainty caused by residual batch–batch effects. 
All of these parameters are described by a two-dimensional Gaussian cluster for each 
genotype. Data points that do not fall into a particular cluster are assigned a 
confidence value reflecting this uncertainty. Clusters with sufficiently large 
uncertainty or low frequency are classified as possible rare allele (PRA) clusters 
because of the lack of observational data to support the unambiguous genotype 
assignment with confidence. In this way, signal values are converted to genotype 
calls with associated confidences or PRA calls. 
 
The first step is to determine what reference model is most appropriate for 
evaluating the signal. This model depends on the pair of alleles that are potentially 
present. For example, in trialleles, there are three separate potential pairs of alleles 
and a reference model for each pair. The model also depends on the copy number 
state of the marker. For typical markers with copy number 2, there are three 
possible genotypes—AA, AB, and BB—each of which is modeled by a Gaussian. For 
markers that are definitely known to have copy number 1 (such as on sex 
chromosomes in appropriate individuals), there are only two genotypes—A and B—
hence, only two clusters. For markers definitely known to have zero copy number (as 
in samples in which a region is deleted), the model outputs only CN=0 with no 
genotype. 
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Figure 1: A marker showing copy number variation. The green triangle represents a call of CN=0 
for the region and it is not carried through for further genotyping analysis. The ellipses are drawn 
at two standard deviations away from the center of the cluster and generally encircle the majority 
of the calls associated with each genotype. The dashed ellipses indicate that the cluster 
represents a possible rare allele (PRA). There were two heterozygote genotypes observed among 
~1,200 distinct samples used to train the clusters and there were no observations of the rare 
homozygote, so any future calls of these genotypes will be classified as PRA given the uncertainty 
in the locations of the clusters for these two genotypes. 

  
Assuming the case in which the copy number is greater than zero, a prior model 
contains a two-dimensional Gaussian for each genotype and a “frequency” for each 
genotype. Each cluster has a mean and variance for contrast and strength values, 
along with a covariance between the two axes. Because this model was trained in a 
Bayesian fashion, the “frequency” of a cluster reflects the amount of training data 
found in that cluster and the prior knowledge of the approximate location of that 
cluster, scaled by a number of pseudo-observations. Thus, the “frequencies” are not 
exactly the population rate of a genotype in the training data (otherwise, untrained 
clusters would have a zero frequency and would never be called), although they are 
approximately the same (a typical untrained cluster has the equivalent of 
approximately 0.3 observations in the reference set). This frequency is important 
when evaluating how unusual a data point is relative to a given cluster center. This 
allows for more accurate placement of decision boundaries. The frequency of a 
cluster is also used when evaluating whether to assign a PRA call to a given data 
point. 
 
To compute a call given a genotype model, the contrast and strength values for a 
sample at a marker are compared to all clusters for the marker in the model. For 
each cluster, the likelihood of the data point is calculated assuming that the 
associated genotype is the true genotype and assuming a Gaussian scatter with 
variance and covariance as described, along with the frequency of the cluster. The 
genotype of the data point is assigned to be the highest likelihood cluster. The 
confidence of this data point is the relative probability that the data point belongs to 
any of the other clusters, or belongs to an “ocean” of uniform probability density 
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representing outlier behavior. The confidence is computed by sum (likelihood of 
belonging to other clusters)/sum(likelihood of any cluster), so lower confidence 
values indicate more confident genotype calls. This confidence value screens out 
ambiguous data points that lie between two clusters, and also screens out unusual 
data points that are not well represented by the training set. Such points are not 
necessarily wrong, but are conservatively assessed as being outside the region the 
training data supports, and are marked as less confident. If the confidence rises 
above a threshold, the genotype call is converted to a no-call and suppressed. 
 

 
Figure 2: The left plot shows the possible calling regions for one marker when only the “ocean” 
parameter is tuned. The right plot shows the possible calling regions when both the ocean and 
confidence parameters are adjusted by the same amount. Judicious selection of these global 
parameters can be used to improve call rate without significantly degrading accuracy. The default 
values of these parameters vary across the DMET Plus genotyping methods used by DMET 
Console™ Software. 

 
An exception to this conservative logic is used when constructing a PRA call. Clusters 
with few to zero reliable data points observed in training are necessarily uncertain in 
position, as they are derived by extrapolation from typical relationships between 
clusters (and occasionally by manual adjustment). If a genotype was not seen in 
training, then the location of the cluster cannot be learned from the actual data. 
Therefore, when the data indicates that a cluster of low frequency is the most likely 
cluster, the call is set to PRA even if the confidence is poor, precisely because the 
uncertainty in cluster location is large. A PRA frequency cutoff (set to 3 by default) 
may be configured by the user such that a cluster is treated as a PRA if the number 
of observations of the genotype among the samples in the training set falls below the 
cutoff. 
 
In summary, the genotyping logic is straightforward: signal values are compared to 
prototype clusters for each possible genotype, and the most likely cluster is chosen 
as the genotype. Data points that are located in ambiguous positions or that are 
unusual compared to the data used as a reference are marked as having poor 
confidences to conservatively screen out data for which the trained model may be in 
error or does not apply. To allow for discovery of rare alleles that were not seen in 
training, PRA calls are made liberally when data points appear to be compatible with 
a rare allele, although the confidences may still be poor. 

Section 5: Predicting chromosome copy number 
The DMET Plus platform detects homozygous deletions (copy number = 0) in the five 
regions listed in Table 4 below. 
 

Gene 
Region 

Chromosome Gene min Gene max Region min Region max 

CYP2A6 19 46,041,284 46,048,180 46,039,000 46,073,000 

CYP2D6 22 40,852,445 40,856,827 40,849,000 40,867,000 
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GSTM1 1 110,031,965 110,037,890 110,029,000 110,042,000 

GSTT1 22 22,706,141 22,714,231 22,680,000 22,727,000 

UGT2B17 4 69,085,497 69,116,840 69,057,000 69,170,000 

Table 4: This table details the five copy number regions analyzed by DMET Plus. Coordinates 
refer to base positions in build 36 of the human genome. The gene min and max fields give the 
transcription footprints, including the untranslated region (UTR). The region min and max include 
the deletion footprint, which is often longer than the transcription footprint. 

 
Normalization and derivation of a signal value for each allele and context of the 
genotyping markers are performed in the same manner as described in section 2. CN 
prediction also makes use of CN probe sets, which are similar to genotyping probe 
sets except that there is just one allele. 
 
The CN analysis becomes different immediately after the probe set summarization. 
The derived signal values are log2-transformed and summed across all alleles and 
contexts, resulting in a single signal value for each marker. An example of the signal 
values for a single probe set is shown in Figure 3. During the training process the 
utility of each probe set for discriminating between CN=0 and CN>0 is quantified by 
a linear discriminant (LD) score. The LD score is defined as the ratio of the 
separation between cluster means and their pooled standard deviation (see Appendix 
B for exact definition). 
 

 
Figure 3: Plot of the signal values for probe set AM_20471_t, a tag probe set for a CN marker in 
the CYP2D6 region. The CN=0 samples form the red cluster with mean value m_0. The CN=1 
samples form the green cluster with mean value m_1. The separation between these clusters has 
an LD score of 13.5. The separation between the other known CN levels is poor for this probe set, 
as is the case for all five interrogated CN regions; as a result, no attempt is made to distinguish 
between any copy numbers larger than zero. 

 
Each CN region is assessed using 10 probe sets. The process by which the probe sets 
were selected and trained is described in Appendix B. One of the results of this 
training process is an estimate for each probe set of the typical mean signal value for 
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CN=0 and CN=1, as well as the LD score quantifying separation. If these quantities 
are defined as m0, m1, and l, respectively, the CN estimate for a probe set signal s is 
defined as 
 

 
   

This is just the linear interpolation of the summary value between the CN=0 cluster 
and the CN=1 cluster at the probe set. 
 
The CN estimate is more accurate for probe sets with high LD scores, so when the 10 
probe set–specific CN estimates are combined to produce a region-specific CN 
estimate, it is done as a weighted average with each probe set’s weight proportional 
to its LD score. The resulting weighted average is called the weighted CN estimate – 
an example of the distribution of weighted CN estimates for the CN region GSTM1 is 
shown in Figure 4. 
 

 
Figure 4: Histogram of combined CN estimates for region GSTM1 in a large sample collection. 
Only samples known to have CN=0 (red) or CN=1 (green) are shown; there is complete 
separation between the two. 

 
The final step is to derive from the weighted CN estimate a classification of the CN in 
the region. Each of the two CN levels is modeled by a t-distribution with mean and 
standard deviation as estimated in the training set and degrees of freedom equal to 
the number of observations of the CN level in the training set. If the number of 
samples is large then the t-distribution is very close to Gaussian. However, CN=0 
samples are relatively rare for the CYP2A6 and CYP2D6 regions, so the use of t-
distributions with small degrees of freedom helps produce a heavier-tailed 
distribution that better reflects the uncertainty in the variance attributed to the 
cluster. 
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The t-distributions are used to make a maximum-likelihood prediction of the copy 
number for each sample. The probability of the observed weighted CN estimate is 
computed under the assumption that it comes from each of the two clusters; this is 
compared with a third “no-call” cluster with a uniform low probability. Each 
probability is multiplied by a cluster-specific prior probability estimated from the 
training set, and the CN call is assigned to the cluster with the largest posterior 
probability. 
 
A confidence value is assigned to each call, computed as 1–pmax, where pmax is the 
posterior probability for the most likely call (which is either CN=0 or CN>0). A lower 
value corresponds to greater confidence in the call. The confidence value is 
compared to a fixed threshold (0.1 by default); if it is too high, the CN region is 
classified as a no-call, otherwise it is classified as the cluster with maximum posterior 
likelihood. 
 

 
Figure 5: CN classification for roughly 1600 samples in the GSTM1 region. The y-axis shows the 
weighted CN estimate and the shape of points indicates how they were called. There are two no-
calls in the region in between the two clusters; everything else is confidently assigned as either 
CN=0 or CN>0.  Samples with known copy number are indicated by colored points as indicated in 
the legend. 

 

Section 6: Outcomes of design decisions 
The DMET™ Plus platform genotyping methodology supports two modes: single-
sample and dynamic clustering. The conservative single-sample mode utilizes only 
the model provided and the data for an individual sample. Thus, the genotyping calls 
are completely independent of other concurrently analyzed samples. The parameters 
for the cluster model are therefore held invariant as a fixed standard for comparison. 
In contrast, dynamic clustering mode adapts to any shifts in genotype cluster 
positions specific to the experimental batch. Allowing the model to track the data 
causes the resulting genotypes to be influenced by what other samples were 
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analyzed at the same time because cluster boundaries are shifted with observations 
in the analysis set. In exchange for this dependence, the call rate generally improves 
as the expected cluster positions adjust to the properties of the batch. 
 
In both modes, an experiment is normalized to a fixed distribution, making the 
intensity values comparable to the corresponding values in the training set on which 
the model is built. The systematic differences in feature-level intensity are held to be 
fixed at the values that were fitted to the training set, allowing summarized signal 
values to be directly compared to the invariant model. The preprocessing is 
extremely conservative. 
 
Although single-sample mode provides some tolerance for systematic shifts through 
the variances assigned to the clusters, it is generally the case that typical data are 
directly comparable to the training set. In cases where experimental results are not 
directly comparable, the confidence score will become poorer. Such an 
incompatibility flags data points that deviate; samples or markers with unusually low 
call rates have changed in some way from the training data. The model itself cannot 
distinguish whether the outlier results are due to noise or systematic deviations, but 
low call rates imply that the training set does not effectively represent the data. As 
shown in Figure 6, this conservative behavior still results in average call rates in 
excess of 99.0% and average concordance to HapMap genotypes greater than 99.5% 
for development data sets. This data was genotyped using the original single-sample 
reference model and settings (“Fixed Genotype Boundaries” method in DMET Console 
Software). 

 
Figure 6: Observed performance of DMET Plus Array during product development. The DMET 
Plus Array was extensively tested, both at Affymetrix and at beta sites. There was a total of 82 
batches of data (where run is defined as a single operator processing one week’s worth of 
samples) with 23 of the batches coming from sites external to Affymetrix product development. 
The 82 batches include over 3,500 samples. Within each batch, any sample with a call rate less 
than 98% was rejected as a potentially problematic sample, leading to the exclusion of 4.4% of 
the samples attempted. For all remaining samples, concordance of the DMET Plus genotype calls 
was compared to a reference data set made up of calls from HapMap, TaqMan, sequencing, and 
the DMET 2.0 Early Access product. Combined, this provided reference calls for almost 1,200 of 
the 1,931 genotyping markers on the product. The plot contains a point for each of the 82 
batches, showing the average call rate and average concordance to reference computed across 
all the passing samples in the batch. 
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Dynamic clustering analysis enables the genotyping procedure to adapt to systematic 
variation from the training data, which can prove useful in improving call rates in 
certain data sets. The lower plot shows that allowing the clusters to adapt to the 
experimental data can dramatically improve the call rate. 

 
Figure 7: Comparison of the cluster plots for the UGT1A1*28 and co-located polymorphisms in 
an example data set colored by genotype call. The red cluster on the right represents 
combinations of (TA)6 and shorter repeat lengths. The orange cluster on the left represents 
combinations of (TA)7 and longer repeat lengths. The central blue cluster represents one allele 
that is (TA)6 or shorter and another allele that is (TA)7 or longer. The ellipses show the one 
standard deviation contour of the clusters. Panel a shows the single-sample genotyping analysis 
results; panel b shows the dynamic clustering analysis results. Allowing the clusters to adapt to 
the data substantially improves the call rate in this example. 

 
Two years after the initial release of the DMET Plus Array, Affymetrix had the 
opportunity to evaluate the performance of the product in customers’ hands. After 
reviewing four large data sets from customers, as well as replicate runs of an 
Affymetrix training plate by 19 customer sites, it was decided that customers would 
benefit from a tuning of the reference models used for both single-sample and 
dynamic clustering analysis methods. The changes involve updates to the global 
analysis parameters and to the reference models. 
 

Analysis configuration 
DMET Console 

Version Comments 
1.2 1.1 1.0 

Fixed Genotype Boundaries – 
version 2 

x   Recommended for general use 

Dynamic Genotype Boundaries – 
version 2 

x   
Alternate method if conditions 
require its use 

Fixed Genotype Boundaries x x x Legacy method 
Dynamic Genotype Boundaries x x  Legacy method 

 Table 5: Supported genotyping methods in DMET Console Software. 
 
Changes to the reference models for version 2 of the genotyping methods are 
discussed in Appendix A2. The global analysis parameters “ocean” and “confidence” 
(see Section 4) were adjusted to increase the calling region in areas with no nearby 
clusters, while also removing more of the ambiguous calls between neighboring 
clusters. A performance comparison of the available genotyping methods within 
DMET Console Software 1.2 is shown in Figure 8. 
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Figure 8: Nineteen runs of training plate samples were collected from customers and the call 
rate and concordance of each to the expected genotype calls were tallied using four genotyping 
methods. No samples were excluded for the average call rate metric. For the concordance metric, 
samples with a call rate less than 98% were excluded. The 98% cutoff is typically used to 
discriminate “in bounds” from “out of bounds” samples. “Dyn” is the dynamic boundaries method, 
“Fixed” is the single-sample method, and “ver_2” refers to the 2nd version of the models and 
settings that became available as of DMET Console Software 1.2. 
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Appendix A1: Training original reference models for genotype calling 

The reference models used with the DMET Plus platform are critical determinants of 
the genotypes and copy number estimates delivered by the product. For single-
sample mode, the reference models serve as fixed distributions that determine the 
relative likelihood of the different genotypes. For dynamic clustering mode, the 
reference models for normalization and feature summarization are used in the same 
manner as in single-sample analysis; for genotyping, they represent the starting 
point or prior for the Bayesian update based on samples in the processing batch. This 
appendix provides an overview of the process followed during the development of 
the product that resulted in the creation of the reference models. 
 
The reference models used for standard normalization, feature summarization, and 
genotype comparison were created primarily with automatic genotyping methods. 
There was, however, some manual curation required of the reference genotype calls 
used in training and of the marker-specific cluster models. A modified version of 
BRLMM-P (as used on the SNP Array 5.08) was utilized for the automated clustering 
step, with parameters altered to reflect the DMET Plus conditions. All markers were 
visualized and checked by expert analysts to verify that the results were in 
accordance with expectation. In some cases, the cluster models for genotyping were 
manually altered to improve unusual markers that were not well served by the 
automated procedures. 
 
The basic dynamic clustering adapts the genotyping models to represent each 
marker’s unique distribution of signal values under each genotype. BRLMM-P is a 
likelihood-based clustering method that updates a prior distribution of genotype 
clusters with tentative genotypes that maximize the likelihood of the observed data 
under the posterior distribution. It then uses the posterior distribution to make the 
reported genotype calls. Stated another way, the method is provided with a general 
description of where clusters should be located (e.g., BB genotypes should have 
higher B signal than AA genotypes). It then looks at the observed data to find where 
clusters actually appear for a marker. Finally, it compares the updated cluster 
information with individual data points to assign genotypes and calls. During this 
procedure, reference data is used to penalize cluster assignments that contradict 
pre-existing knowledge of marker genotypes in samples. There are additional 
penalties against undesired cluster properties, such as clusters that are poorly 
separated. These global penalties and reference data provide good average-case 
performance; however, unusual markers still require manual intervention for 
improved outcomes. 
 
The model used to represent the genotype signal values is a Gaussian mixture 
model. Every genotype state corresponds to a two-dimensional Gaussian in the 
clustering space, with an associated frequency. In the case of BRLMM-P, this model 
is Bayesian with a fully conjugate normal-inverse-gamma (technically, normal-
inverse-Wishart, because the clusters are multidimensional) prior on the mean of the 
cluster center and the variance of the cluster. Both the mean and the variance of a 
cluster have a precision to which they are known. Because of the conjugate prior, 
this precision is naturally scaled in “number of pseudo-observations” for a given 
cluster. After training, clusters with large uncertainty in their position have a small 
precision, and clusters with small uncertainty have a large precision (prior precision 
plus the number of observations of that genotype in the training data). Thus, every 
individual genotype cluster has seven parameters: meanX, meanY, varX, varY, 
covXY, precisionMean, and precisionVariance, where precisionMean also represents 
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an approximate frequency for that cluster. The full model also includes correlations 
between cluster center locations; there are 12 parameters for correlations between 
the three cluster centers. This prior model represents the important facts about a 
marker: where signals should be found for each genotype in a typical marker, what 
is the typical scatter around the expected signal location, what is the rough relative 
frequency of a given genotype, and to what precision is this information known. 
 
To update a prior model, tentative genotypes are assigned to data points provided in 
dynamic clustering mode. The tentative genotypes are generated by trying all 
plausible assignments of genotypes to data points, following the rule that BB 
genotypes must have smaller contrasts (log2(A) – log2(B)) than AB genotypes, and 
AB genotypes in turn must have contrasts smaller than AA genotypes, that is, more 
of a given allele should correspond to more signal for the probe set specific to a 
given allele. The posterior likelihood of each plausible assignment is then evaluated 
(using a one-dimensional Gaussian model in the contrast dimension alone) to find 
the maximum likelihood assignment of tentative genotypes. 

 
Figure 9: Tentative genotypes are computed by finding a hard labeling of the data with 
maximum likelihood under the posterior Gaussian model. Because plausible genotypes must have 
contrast(BB) < contrast(AB) < contrast(AA), an assignment of genotypes to data is exactly 
described by two transition points where the number of B alleles changes. All (n+2) x (n+1) 
plausible assignments of genotypes are evaluated using the posterior Gaussian model, with 
additional penalties for contradiction of known references and bonuses for well-separated 
clusters. The tentative genotypes are then used to update the two-dimensional Gaussian model 
used in genotyping. 

 
This likelihood function penalizes each assignment that contradicts a reference 
genotype, thereby reducing the likelihood of clusterings that are inconsistent with 
the reference data. Because even very good reference data sources have a non-zero 
error rate, this penalty is large, but not infinite. There are additional modifiers to the 
likelihood for clusters that are close, either in absolute distance between cluster 
means, or the distance between cluster means squared, scaled by the variance. The 
former modification is implemented by means of an isotonic regression that forces 
the posterior cluster means to be separated by at least a specified distance. The 
latter modification is implemented as a bonus to the likelihood for well-separated 
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clusters, which is smoothly thresholded by the Geman–McClure transformation: for a 
given scaled separation F, the bonus per data point in such clusters is B = F/(1+F/z), 
where z is a tuning parameter that sets the threshold. Both of these modifications 
bias the clustering towards finding well-separated clusters even in the case of non-
Gaussian behavior within a cluster or clusters. However, in the case of unusual 
markers in which the clusters are not well separated, this bias will work against 
finding the true division of the data. Because this is rarely the case for markers that 
are wanted for a high-accuracy product, the bias is useful. The few unusual 
exceptions in the DMET Plus platform have been handled by manual curation. 
 
Thus, the tentative genotypes reflect the prior information about cluster locations, 
the observed data, and the reference data used for training. They are reasonably 
accurate in themselves, but can be improved by using the full two-dimensional 
posterior model, as well as producing a model that is consistently applicable to 
further data sets. 

 
Figure 10: Visualizing a Bayesian update to the variance. Here the black dashed ellipses indicate 
the prior variances for clusters, and the solid ellipses indicate the posterior variance. Variances 
are shrunk to have common scale in X and Y directions, borrowing information from highly 
observed clusters to estimate scale for poorly observed clusters such as the AA genotype. The 
correlation between the scatter in X and Y is allowed to vary by cluster so that the major trend in 
the cluster is captured. The updated variance is a combination of the prior variance, the scatter of 
the observed data around the cluster center and residual uncertainty from shifting the location of 
the cluster. The posterior precision is the prior precision plus the number of observations in a 
cluster. 

 
The prior model is updated by tentative genotypes to produce a posterior model 
capturing the information provided by the observed data. The posterior model is of 
exactly the same form as the prior model, but with the means, variances, and 
precisions updated to reflect the increase in cluster information. The correlations 
between cluster centers are also taken into account in the updated equations, which 
is the standard M = (K+N)-1 * (Ku+Nm)-1 for means, where K is the prior precision 
matrix, N is the matrix assigning tentative genotype observations to clusters, u is the 
prior mean locations, and m is the observed mean locations. The update equation for 



 
 
Affymetrix® White Paper: DMETTM Plus genotyping and  June 8, 2011 
copy number methods  P/N DNA00584 Rev.1  
 
For Research Use Only. Not for use in diagnostic procedures.   Page 18 of 29 

the variance is the typical full conjugate update V(p+n) = pV0 + SS(observed) + 
kn(u-m) 2/(k+n), that is, the variance is the prior variance, plus the observed scatter 
within a cluster, plus the uncertainty in location due to moving the cluster center. 
This variance update is performed for each cluster independently, and then a 
shrinkage term is applied that shrinks the scale of the within-cluster variances to be 
similar. This ad-hoc shrinkage improves the behavior of clusters with few data 
points. 
 
After this update, the posterior model is used to evaluate the genotype calls and 
confidences for each sample. The call is made by assigning the genotype associated 
with the cluster to which the observed signals belong with highest relative 
probability. This likelihood is evaluated as the normal likelihood with cluster means 
and variances as in the posterior and relative frequency as provided by the precision 
of the mean. The confidence is assigned as the relative probability that the data 
point belongs to one of the other clusters or to an “outlier” cluster with a small 
uniform probability density. This last cluster controls for data points unusual relative 
to the typical observed data where the model assumptions may not apply. 
 
This posterior model can then be preserved for future single-sample analysis or used 
as a prior model for successive instances of training data to accumulate more details 
of marker behavior. For the DMETPlus platform, single-sample analysis uses the 
posterior model produced by the training runs (after manual curation), allowing the 
product to provide genotype calls relative to the fixed training set without depending 
on other samples. Dynamic clustering analysis uses the reference models as priors 
for additional adaption given the samples in the processing batch, enabling 
successful analysis for a wider range of assay conditions. 
 
Automated clustering operates as above: global information about cluster properties 
is combined with observed data points and reference data to produce genotype 
models for each marker. However, there were several categories of important 
markers for which the automated cluster models were insufficiently resolved. First, 
there were multiple markers with unusual cluster locations due to idiosyncratic 
hybridization or amplification of probes. These markers were manually curated to 
ensure proper cluster labeling and proper positioning of unobserved clusters. Second, 
there were markers with unusual cluster properties due to the model being 
inapplicable, e.g., two or more clusters within a given genotype due to artifacts, copy 
number variations in some samples not reported by the literature, and so forth. 
These markers were manually curated to ensure the cluster model covered the 
appropriate samples. Third, there were multiple markers in which the clusters were 
well separated, though in absolute terms not far from one another in contrast space, 
such that the global biases against solutions with closely located clusters were 
counterproductive in producing accurate genotypes. Such markers were reclustered, 
allowing cluster centers to be close in absolute terms, and the resulting models were 
manually combined with the standard models generated by the automation. 
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Figure 11: An example of an unusual marker. The location of the BB homozygous cluster has 
shifted to a position more typical of an AB heterozygous cluster. Further, the BB and AB clusters 
are unusually close together in absolute terms, even though their resolution is decent (separation 
of cluster means is small, but so is the cluster variance). This marker was better clustered by 
relaxing the constraints requiring large separation of cluster means, and the model for this 
marker used in the DMET Plus product was taken from dynamic clustering analysis with minimal 
constraints. 

 
A final step in the manual modification of the marker-specific models was to inflate 
the variance for all clusters to account for shifting of cluster centers due to various 
experimental batch effects. That is, it is expected for clusters to wander slightly from 
the estimate of the true location provided by the training data. The variance was 
additively increased based on an estimate of the mean variance added by such 
cluster shifts in both X and Y. This increase allows for the confidence in such calls to 
be reasonably estimated under the real-world conditions in which markers vary 
slightly from the training data. Large systematic shifts for individual markers can still 
lead to an increase in no-calls, indicating the inapplicability of the training data for 
such a marker and flagging the data points as suspicious, though importantly in such 
cases the concordance usually remains high. This behavior was chosen as a 
conservative option to avoid over-training to any individual marker and highlight 
unusual circumstances. 
 
Manual intervention also occurred within the pre-processing of the data. An 
automated pass was done to remove the worst half of the probes within each probe 
set (those that contributed the least to correct classification of genotypes). For high-
value, difficult markers, the probe set content was hand-edited to select only probes 
that specifically responded to genotype differences with good signal. Each probe was 
processed separately to yield call rate, concordance, and other measures of cluster 
quality. The selection process identified the largest number of probes consistent with 
a desired quality metric. This process was naturally subjective, difficult to automate, 
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and marker-dependent, but allowed many important markers to be included in this 
product. 
 
All of the training described above was done on a set of more than 1,300 samples (of 
which more than 1,200 were distinct DNAs) prepared and run at Affymetrix. The 
sample set included standard reference samples available from Coriell as well as 
samples from the extended HapMap collection. Sequencing results for high-
importance markers were obtained in a number of samples, allowing for verification 
of concordance as well as providing reference data for constructing accurate 
genotype models. To ensure the capture of as much variability as possible, this data 
set included multiple types of naturally occurring variation in the experimental runs: 
multiple operators, different lab equipment, and multiple reagent lots. 

Appendix A2: Revision of reference models for genotype calling 
Two years after the initial release of the DMET Plus Array, Affymetrix had the 
opportunity to evaluate the performance of the product in customers’ hands. After 
reviewing four large customer data sets from customers, as well as replicate runs of 
an Affymetrix training plate by 19 customer sites, it was decided that customers 
would benefit from a tuning of the reference models used for both single-sample and 
dynamic methods. The updated genotyping methods, referred to as “version 2” in 
DMET Console Software 1.2, are discussed below. 
 
First, the cluster models for all markers were visually inspected for a data set 
comprising ~2,400 samples. As part of the review, one-third of the markers had 
their cluster models adjusted. In most cases the adjustments did not result in any 
changed calls for these samples. However, some markers benefitted from reference 
model tuning (Figure 12). 

 
Figure 12: Cluster plots for one marker. The top plot shows the cluster boundaries used by the 
original fixed genotyping method available from DMET Console Software. It appears that some 
samples that should be assigned to the right (red) cluster are instead being captured by the 
middle (blue) cluster. The bottom plot shows the adjusted boundaries after changing only the 
reference models. Note that the final boundaries are a function of both the models (the “priors”) 
and the analysis parameters, which are discussed in Section 4. 
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In the original data set used by Affymetrix to train cluster locations, some markers 
did not have sufficient samples representing the variant genotypes to properly define 
the cluster positions of the variant genotypes. When presented with samples that 
had these rare variant genotypes, the software would only report a possible rare 
allele (PRA) call. Fortunately, the additional data recently shared with Affymetrix 
includes samples with rare variant genotypes. In 47 cases in which there is now 
enough supporting data to confidently assign a genotype, the former PRA calls are 
now assigned a full call. An example is shown in Figure 13. 
 

 
Figure 13: The top cluster plot shows the original model for one marker, in which the left cluster 
with the dashed boundaries would only report a PRA genotype if a sample was more likely to 
belong to it than to another cluster. This is because the original sample training set only had two 
samples with this rare genotype, fewer than the minimum of three required to report it as a full 
call (this minimum prior observations threshold is configurable in DMET Console Software). In the 
augmented data set, there are more samples with this rare genotype. As a result, the number of 
homozygous variant observations in the models file was adjusted upwards to reflect the 
increased confidence in the assignment of this call. 

 
Table 6 summarizes the genotypes whose number of observations increased enough 
that they can now be fully called, instead of being reported as PRA. 
 

Probe set 
ID Common name  

Reportable genotypes using 
version 2 genotyping methods 

(formerly PRA) 

AM_14631 ABCB1_c.-1G>A A/A 

AM_10915 ABCC1_c.275C>T(S92F) C/T 

AM_10172 ABCC2_c.3396T>C(I1132I) C/T 

AM_14942 ABP1_c.-4132C>T C/T 

AM_13718 ADH5_c.-422G>C C/C 

AM_14467 AHR_c.65+125C>A A/A 

AM_11173 ALDH3A2_c.28C>T(Q10X) C/T 

AM_11808 ARNT_c.-60G>T T/T 
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Probe set 
ID Common name  

Reportable genotypes using 
version 2 genotyping methods 

(formerly PRA) 

AM_10591 ATP7B_c.2973G>A(T991T) A/A 

AM_10002 CHST3_c.*1155G>CorGG C/G 

AM_12527 CHST10_c.*39T>C C/C 

AM_10775 CYP1A1_1412T>C(I286T) C/T 

AM_10803 CYP1A2*6_5090C>T(R431W) C/T 

AM_11414 CYP2B6*3_18045C>A(S259R) A/C 

AM_11405 CYP2B6*8_13072A>G(K139E) A/G 

AM_11402 CYP2B6_12740G>C(P72P) C/C 

AM_10121 CYP2C9*12_50338C>T(P489S) C/T 

AM_10093 CYP2C9*13_3276T>C(L90P) C/T 

AM_12264 CYP2D6*9_2615delAAG -/- 

AM_10249 CYP2E1*2_1132G>A(R76H) A/G 

AM_11462 CYP2F1*3_11887C>T(P490L) T/T 

AM_11463 CYP2S1_1300G>A(P66P) A/G 

AM_14826 CYP3A4*10_14304G>C(D174H) C/G 

AM_14812 CYP3A4*11_21867C>T(T363M) C/T 

AM_14749 CYP3A5*4_14665A>G(Q200R) A/G 

AM_14790 CYP3A7*1D_-91G>A(Promoter) A/G 

AM_11302 CYP4F2_7207G>T(G185V) T/T 

AM_12051 FMO4_c.843C>T(F281F) T/T 

AM_14231 GSTA2_c.*149T>A A/A 

AM_10725 GSTZ1_c.124G>A(G42R) A/A 

AM_14982 NAT1*22_c.752A>T(D251V) A/T 

AM_14998 NAT2*19_c.190C>T(R64W) C/T 

AM_15335 ORM2_c.421G>C(G141R) C/C 

AM_14119 PPARD_c.-101-28005G>A A/A 

AM_10648 SLC15A1_c.1352C>A(T451N) A/A 

AM_10664 SLC15A1_c.22-40G>C C/G 

AM_10658 SLC15A1_c.351C>A(S117R) A/C 

AM_11743 SLC16A1_c.*145T>G G/G 

AM_14345 SLC22A1_c.113G>A(G38D) A/A 

AM_14350 SLC22A1_c.262T>C(C88R) C/T 

AM_10357 SLC22A8_c.913A>T(I305F) T/T 

AM_10731 SLC28A2_c.488T>G(L163W) G/G 

AM_12342 SLC5A6_c.282A>G(R94R) G/G 

AM_10542 SLCO1A2_c.38T>C(I13T) C/C 

AM_13591 SULT1B1_c.612A>C(E204D) A/C 

AM_12557 SULT1C2_c.179A>C(D60A) A/C 

AM_12414 XDH_c.837C>T(V279V) T/T 
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Table 6: The genotypes that can now be reported because they appear to be present in at least 
three samples of an augmented data set. Previously, they were reported as PRA (when using the 
default setting “minimum prior observations = 3”). 

 
The second version of the dynamic genotyping method uses a reference model 
derived from the model used for the fixed boundaries genotyping method. Refer to 
Appendix C for a description of how the genotype cluster weights were edited. 
 

Appendix B: Training reference models for copy number estimation 
This section describes the process whereby the model parameters required for copy 
number estimation were derived. 
 
A key requirement for this process was known examples for each of the CN levels for 
each region. Independent reference calls were obtained from a combination of CN 
estimates from the Affymetrix Genome-Wide Human SNP Array 6.0, Cogenics 
CYP2D6 commercial assays and TaqMan® assays. The sample set used included 
HapMap Caucasian, Asian, and Yoruban ethnicities, as well as some non-HapMap 
genomic DNAs. 
 
The number of known references for each region is summarized in Table 7. 
 

Region 
 

Counts of unique samples 
Frequency of 

CN=0 CN=0 CN=1 CN>=2 

CYP2A6 5 52 441 1.0% 

CYP2D6 4 89 424 0.8% 

GSTM1 231 208 75 45.0% 

GSTT1 155 234 124 30.2% 

UGT2B17 145 182 192 27.9% 

  Table 7: Counts of known CN levels among samples in the training set. 
 
 
Probe set selection 
The first step in training SNP-specific models is to use the reference genotype calls to 
determine the probe sets of maximal use for discriminating CN=0 from CN>0. There 
are four kinds of probe sets available: CN ASO, genotyping ASO, CN tag, and 
genotyping tag. Table 8 counts the SNP and tag probe sets within the region 
minimum and maximum for each copy number region. 
 

Region CN ASO 
Genotyping 

ASO 
CN tag 

Genotyping 
tag 

CYP2A6 32 19 32 24 
CYP2D6 226 30 241 17 
GSTM1 52 3 52 5 
GSTT1 39 6 39 7 

UGT2B17 71 4 71 6 

 Table 8: Available MIP probe sets per region. 
 
Several genomic regions are subjected to mPCR amplification to disambiguate them 
from other similar regions in the genome. It is possible to use markers in these 
amplified regions to estimate copy number, but the repeatability of mPCR introduces  
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a new variance component into the prediction process. For this reason, markers 
located within mPCR amplicons are excluded from consideration for use in predicting 
CN. 
 
A sample collection with as many examples as possible of CN=0 and CN=1 is used 
for training. All samples are normalized, and summary values are computed for each 
CN probe set as described in section 4. For each probe set, the samples with known 
CN are used to compute a linear discriminant (LD) score to quantify capacity for 
reliably discriminating CN. 
 
The number of samples, average, and standard deviation (n0, m0, and s0, 
respectively) are computed based on all the samples known to have CN=0. Similarly 
n1, m1, and s1 are computed for the samples known to have CN=1. The LD score is 
then defined as 
 

 
 
Figure 14 shows the LD scores as a function of position for the CYP2D6 region. 

 
 Figure 14: LD score of each probe set in the CYP2D6 region plotted as a function of genomic 
 position of the probe set. The LD score indicates how well the probe set signal clusters by CN. 
 High LD scores > 5 are good. The dotted vertical lines show the transcription footprint of 
 CYP2D6. 
 
Distinguishing between CN=0 and CN=1 is the most important task as the CN=2 
cluster is further from the CN=0 cluster than the CN=1 cluster. For this reason the 
CN=2 samples are not included with the CN=1 samples when computing the LD 
score as this would shift the mean and inflate the variance of the CN>0 cluster. 



 
 
Affymetrix® White Paper: DMETTM Plus genotyping and  June 8, 2011 
copy number methods  P/N DNA00584 Rev.1  
 
For Research Use Only. Not for use in diagnostic procedures.   Page 25 of 29 

 
For the final CN model the 10 probe sets with the highest LD scores are used – 
experimenting with different numbers of probe sets to use had no discernable effect 
on performance. There are many criteria for choosing probes, but this simple method 
does about as well as any. The parameters for these 10 probe sets are then used to 
determine the region-level parameters by calculating for each sample of known CN 
the weighted CN estimate as described in section 4, then computing a new set of 
means and variances based on these region-summarized values. These region-level 
values can also be used to compute a region-level LD score to quantify the CN 
discrimination ability for each region. These region-level LD scores are summarized 
in Table 9. 
 
Note that CYP2A6 and CYP2D6 have particularly small representation for CN=0 as 
these homozygous deletions are relatively rare. This makes estimates of their 
distribution parameters less precise. To reduce the risk of downstream problems 
from having few observations, a small number of pseudo-counts (5) is added to the 
number of observations for each cluster. Additionally, if the cluster variance is below 
a minimal threshold it is brought up to the minimum value. 

 

Region 
Samples 

with CN=0 
Samples with 

CN=1 
Chrom LD score 

CYP2A6 5 52 19 31.0 

CYP2D6 4 89 22 8.7 

GSTM1 231 208 1 47.5 

GSTT1 155 234 22 22.5 

UGT2B17 145 182 4 21.0 

 Table 9: Region-level LD scores in the training set. 
 

Appendix C: Reference model changes for dynamic clustering analysis 

The ability of samples in the analysis batch to update the reference signal 
distributions depends on the number of observations in the reference clusters. To 
facilitate reasonable updates for batch sizes of tens of samples, the number of 
observations per genotype is saturated at a small number. The strategy for selecting 
how to edit the number of observations depends on the dynamic method. 
 
The first version of the dynamic genotyping method saturates the number of 
observations per genotype at 20. There are some markers with relatively close-lying 
clusters, however, that are better served by limiting the amount of update. For these 
markers, the number of observations remains unsaturated, in effect dramatically 
reducing the weight of samples in the analysis batch and limiting the cluster update. 
The markers for which the observations do not saturate were selected if they had a 
pair of genotype distributions for which the Fisher’s linear determinant score was less 
than 20, with a small number of special exemptions. Table 10 lists the markers 
whose number of observations do not saturate. 
 
The second version of the dynamic genotyping method uses a reference model 
derived from the updated single-sample model. For this method, the number of 
observations was usually linearly scaled down from its single-sample amount, with a 
maximum number of observations at 48. Genotypes having fewer than six 
observations were not scaled down for the dynamic method. The only markers whose 
number of observations were not scaled down were apparently monomorphic 
markers that were strongly tilted and had a nearby PRA cluster. These markers were  
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handled specially to reduce the likelihood of the PRA cluster drifting into the major 
homozygous cluster as part of the dynamic models adaptation process. Table 10 lists 
the markers whose number of observations do not saturate. 
 
 

 
 Figure 15: Comparison of cluster weights among reference model files. The original dynamic 
 model file usually saturates weights at 20. Dynamic version 2 aims to preserve the relative 
 weights of clusters. This change has a slight effect on call assignment of data between neighbor 
 clusters of strongly dissimilar weights. 
 
 
Table 10: Markers whose number of observations do not saturate in dynamic clustering mode. 
 

Probe set 
ID Category Common name 

Unsaturated model 
weight 

Dynamic 
version 1 

Dynamic 
version 2 

AM_10100 Core CYP2C9*2_3608C>T(R144C) X   

AM_10135 Core CYP2C8*3_2130G>A(R139K) X   

AM_11647 Core DPYD*2_c.1905+1G>A X   

AM_11052 Pharma VKORC1_c.85G>T(V29L) X   

AM_14620 Non-core ABCB1_c.729A>G(E243E) X   

AM_10915 Non-core ABCC1_c.275C>T(S92F) X   

AM_10932 Non-core ABCC1_c.2168G>A(R723Q) X   

AM_10260 Non-core ABCC8_c.4714G>A(V1572I) X   

AM_13810 Non-core ADH1C_c.1054C>A(P352T) X X 

AM_14465 Non-core AHR_c.-464G>A X   

AM_14467 Non-core AHR_c.65+125C>A X   

AM_11202 Non-core ALDH3A1_c.914A>T(Y305F) X   

AM_11203 Non-core ALDH3A1_c.741T>A(P247P) X   
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Probe set 
ID Category Common name 

Unsaturated model 
weight 

Dynamic 
version 1 

Dynamic 
version 2 

AM_15472 Non-core ATP7A_c.4201G>C(V1401L) X   

AM_15472 Non-core ATP7A_c.4201G>C(V1401L) X   

AM_10588 Non-core ATP7B_c.*1172G>A   X 

AM_11501 Non-core CDA_c.154+3136T>C X   

AM_13324 Non-core CHST13_c.98-5237A>C X   

AM_13342 Non-core CHST2_-346G>C X X 

AM_11126 Non-core CHST5_c.510A>G(V170V) X X 

AM_11127 Non-core CHST5_c.490A>G(T164A)   X 

AM_11128 Non-core CHST5_c.-5A>G X   

AM_15226 Non-core CYP11B1_5573T>C X   

AM_15258 Non-core CYP11B2_4451T>C(I339T) X   

AM_12498 Non-core CYP1B1_81G>C(L27L) X X 

AM_14021 Non-core CYP21A2_G>C(E351D) X X 

AM_14022 Non-core CYP21A2_C>T(R379C) X X 

AM_14023 Non-core CYP21A2_G>A(G395S)   X 

AM_10564 Non-core CYP27B1_2595G>A(S356N)   X 

AM_11349 Non-core CYP2A6_1874G>T X   

AM_11364 Non-core CYP2A6*1D_-1013A>G X   

AM_12278 Non-core CYP2D6*29_1659G>A(V136I) X   

AM_11459 Non-core CYP2F1_5308G>C(V175L) X   

AM_14826 Non-core CYP3A4*10_14304G>C(D174H)   X 

AM_14856 Non-core CYP3A43_14956C>T X X 

AM_14781 Non-core CYP3A7*2_26041C>G(T409R) X   

AM_11310 Non-core CYP4F2*2_34T>G(W12G) X   

AM_11279 Non-core CYP4F3_11466G>A(P348P) X   

AM_11280 Non-core CYP4F3_11496A>G(V358V) X   

AM_11608 Non-core CYP4Z1_c.876+394T>G X   

AM_11609 Non-core CYP4Z1_c.1170T>C(I390I) X   

AM_11611 Non-core CYP4Z1_c.1202-2730A>C X   

AM_15086 Non-core CYP7B1_1678T>C X   

AM_12087 Non-core EPHX1_c.128G>C(R43T) X   

AM_12112 Non-core EPHX1_c.1216T>C(L406L) X   

AM_12057 Non-core FMO4_c.1250+591C>T X   

AM_11913 Non-core FMO6_1232G>A X   

AM_15492 Non-core G6PD_c.1466G>T(R489L) X   

AM_15492 Non-core G6PD_c.1466G>T(R489L) X   

AM_15493 Non-core G6PD_c.1093G>A(A365T) X X 

AM_15493 Non-core G6PD_c.1093G>A(A365T) X X 

AM_15494 Non-core G6PD_c.653C>T(S218F) X   
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Probe set 
ID Category Common name 

Unsaturated model 
weight 

Dynamic 
version 1 

Dynamic 
version 2 

AM_15498 Non-core G6PD_c.319G>T(V107L)   X 

AM_14253 Non-core GSTA1_c.504G>A(E168E) X   

AM_14254 Non-core GSTA1_c.501C>G(V167V) X   

AM_14287 Non-core GSTA1_c.-5184G>T X   

AM_14244 Non-core GSTA2_c.-10G>C X   

AM_11702 Non-core GSTM1_c.84T>C(Y28Y) X   

AM_11705 Non-core GSTM1_c.178-78T>C   X 

AM_11710 Non-core GSTM5_c.-524C>T X   

AM_10434 Non-core GSTP1_c.21C>G(V7V) X   

AM_13243 Non-core NR1I2_c.418G>A(V140M) X   

AM_11837 Non-core NR1I3_C>A(rs11265572) X   

AM_15317 Non-core ORM1_c.199T>C(F67L) X   

AM_11219 Non-core PGAP3_c.*560C>T X   

AM_11209 Non-core PNMT_c.26A>G(N9S)   X 

AM_11218 Non-core PNMT_c.826T>A(W276R)   X 

AM_14675 Non-core PON1_c.582G>A(W194X) X   

AM_14519 Non-core POR_c.*372G>A X   

AM_14128 Non-core PPARD_c.-101-15034G>A   X 

AM_11032 Non-core PRSS53_c.89A>G(Q30R) X   

AM_15349 Non-core RXRA_c.1242-27G>A X   

AM_15353 Non-core RXRA_c.*2102G>TorC X X 

AM_15353 Non-core RXRA_c.*2102G>TorC X X 

AM_12214 Non-core SLC19A1_c.696T>C(P232P) X   

AM_12215 Non-core SLC19A1_c.246C>G(P82P) X   

AM_12216 Non-core SLC19A1_c.80A>G(H27R) X   

AM_14377 Non-core SLC22A1_c.*15G>A(3'UTR) X   

AM_10379 Non-core SLC22A11_c.91A>G(I31V) X X 

AM_10384 Non-core SLC22A11_c.464T>G(V155G)   X 

AM_14410 Non-core SLC22A3_c.360C>T>G(R120R) X   

AM_13921 Non-core SLC22A5_c.12C>G(Y4X) X X 

AM_10360 Non-core SLC22A8_c.779T>G(I260R) X X 

AM_10810 Non-core SLC28A1_c.124T>C(L42L) X X 

AM_14172 Non-core SLC29A1_c.687G>A(L229L)   X 

AM_10417 Non-core SLC29A2_c.288G>A(T96T) X   

AM_10418 Non-core SLC29A2_c.204C>A(N68K) X   

AM_10518 Non-core SLCO1A2_c.2003C>G(T668S) X   

AM_10525 Non-core SLCO1A2_c.968T>C(L323P) X X 

AM_10497 Non-core SLCO1B1*16_c.452A>G(N151S)   X 

AM_10851 Non-core SLCO3A1_c.604_605AT>TA(I202Y) X X 



 
 
Affymetrix® White Paper: DMETTM Plus genotyping and  June 8, 2011 
copy number methods  P/N DNA00584 Rev.1  
 
For Research Use Only. Not for use in diagnostic procedures.   Page 29 of 29 

Probe set 
ID Category Common name 

Unsaturated model 
weight 

Dynamic 
version 1 

Dynamic 
version 2 

AM_12159 Non-core SLCO4A1_c.617G>A(R206K) X X 

AM_12160 Non-core SLCO4A1_c.797-286T>C X   

AM_10985 Non-core SULT1A2_c.888A>G(R296R) X   

AM_12588 Non-core SULT1C4_c.-483C>T X   

AM_14921 Non-core TBXAS1_c.487C>A(L163I) X   

AM_14924 Non-core TBXAS1_c.772A>G(K258E) X   

AM_14933 Non-core TBXAS1_c.1273C>T(R425C) X   

AM_13005 Non-core UGT1A3_c.31T>C(W11R) X   

AM_13007 Non-core UGT1A3_c.81G>A(E27E) X   

AM_13008 Non-core UGT1A3*4_c.133C>T(R45W) X   

AM_13011 Non-core UGT1A3_c.477A>G(A159A) X   

AM_13425 Non-core UGT2B17_c.1313+840A>G X   

AM_13464 Non-core UGT2B7*2_c.801T>A(P267P) X   

AM_11061 Non-core VKORC1_c.-5014T>C(Promoter) X X 

 


